Latest Publications

Barends, T. R. M.; Foucar, L.; Ardevol, A.; Nass, K.; Aquila, A.; Botha, S.; Doak, R. B.; Falahati, K.; Hartmann, E.; Hilpert, M. et al.; Heinz, M.; Hoffmann, M. C.; Köfinger, J.; Koglin, J. E.; Kovácsová, G.; Liang, M.; Milathianaki, D.; Lemke, H.; Reinstein, J.; Roome, C. M.; Shoeman, R. L.; Williams, G. J.; Burghardt, I.; Hummer, G.; Boutet, S.; Schlichting, I.:
Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation.
Preuss, S. J.; Trivedi, C.; vom Berg-Maurer, C.; Ryu, S.; Bollmann, J. H.:
Classification of object size in retinotectal microcircuits.
Kupitz, C.; Basu, S.; Grotjohann, I.; Fromme, R.; Zatsepin, N. A.; Rendek, K. N.; Hunter, M. S.; Shoeman, R. L.; White, T. A.; Wang, D. et al.; James, D.; Yang, J.-H.; Cobb, D. E.; Reeder, B.; Sierra, R. G.; Liu, H.; Barty, A.; Aquila, A. L.; Deponte, D.; Kirian, R. A.; Bari, S.; Bergkamp, J. J.; Beyerlein, K. R.; Bogan, M. J.; Caleman, C.; Chao, T.-C.; Conrad, C. E.; Davis, K. M.; Fleckenstein, H.; Galli, L.; Hau-Riege, S. P.; Kassemeyer, S.; Laksmono, H.; Liang, M.; Lomb, L.; Marchesini, S.; Martin, A. V.; Messerschmidt, M.; Milathianaki, D.; Nass, K.; Ros, A.; Roy-Chowdhury, S.; Schmidt, K.; Seibert, M.; Steinbrener, J.; Stellato, F.; Yan, L.; Yoon, C.; Moore, T. A.; Moore, A. L.; Pushkar, Y.; Williams, G. J.; Boutet, S.; Doak, R. B.; Weierstall, U.; Frank, M.; Chapman, H. N.; Spence, J. C. H.; Fromme, P.:
Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser.
Barends, T. R.M.; Foucar, L.; Botha, S.; Doak, B.; Shoeman, R. L.; Nass, K.; Koglin, J. E.; Williams, G. J.; Boutet, S.; Messerschmidt, M. et al.; Schlichting, I.:
De novo protein crystal structure determination from X-ray free-electron laser data.


The Institute works on fundamental biological issues that are of long-term medical significance. One main area of research is neurophysiology: What are the changes in the brain that underlie processes like learning and remembering? What does the three-dimensional circuit diagram of the billions of nerve cells in the brain look like? How can the processes in nerve cells in the living brain be made visible through new microscopic methods? The scientists also work to understand how perceptions of odours are stored in the brain, and how networks are formed which are capable of adapting to stress. A second main area of research at the Institute concerns the complex chemical reactions in living cells. These are performed by enzymes, and the research aims to determine the atomic structure of important enzyme molecules. [more]


loading content