Prof. Dr. Joachim Spatz
Director
Phone:+49 6221 486-420

Curriculum Vitae

Phone Stuttgart: +49 711 689-3610

Elisabeth Pfeilmeier
Office Cellular Biophysics
Phone:+49 711 689-3611

Recent Press Releases

Cell Collectives –Who's in charge?

August 27, 2018

A better understanding of mechanical interactions between leaders and followers in migrating groups of cells.

[more]
BinNova licenses technology to produce ultra-thin metal fibers with unique material properties.

New method for production of micro-metal fibers

July 20, 2018

BinNova licenses technology to produce ultra-thin metal fibers with unique material properties. [more]

Department of Cellular Biophysics

Header image 1533727992

Department of Cellular Biophysics

The primary scientific goal of the department is to develop technologies, based on physics, chemistry and materials science, for unraveling fundamental problems in cellular science, as well as to construct life-like materials. In this context, the department aims for a fundamental understanding of (i) specific topics related to the pathophysiology of cells and cell cohorts by analyzing and manipulating cells on the nanoscale; (ii) how to bottom-up assemble synthetic cell functions and materials, (iii) the role of growth factors in cellular mechanobiology, and (iv) the role of polysaccharides, in particular hyaluronan, of the extracellular matrix in regulating cell fate. In particular, we shed light on scientific questions related to individual and collective cell migration, cellular interactions with the environment (cell-cell and cell-matrix adhesion) in association with immune responses, wound healing, tissue morphogenesis and tumor development. All these projects benefit from the highly interdisciplinary nature of the department and the MPI of Medical Research, which provides expertise from various scientific directions.

    

Departmental Projects Joachim Spatz

Collective cell migration is the process of several cells migrating as a cohesive group, in which each individual actively coordinates its own movement with that of its neighbors.

Joachim Spatz: Collective Cell Migration

Collective cell migration is the process of several cells migrating as a cohesive group, in which each individual actively coordinates its own movement with that of its neighbors.
The major aim of our interdisciplinary research is the bottom-up assembly of synthetic cells which can adhere, migrate and divide.

Ilia Platzman: Engineering of Synthetic Cells

The major aim of our interdisciplinary research is the bottom-up assembly of synthetic cells which can adhere, migrate and divide.
Find information about Fania Geiger's projects here. They include the development of hydrogel based stents against glaucoma and tobacco mosaic virus-based structuring tools.

Fania Geiger: Glaucoma Nano-Technology

Find information about Fania Geiger's projects here. They include the development of hydrogel based stents against glaucoma and tobacco mosaic virus-based structuring tools.
We are interested in understanding how mammalian cells sense and respond to their mechanical microenvironment.

Dimitris Missirlis: Hydrogels and Mechanotransduction

We are interested in understanding how mammalian cells sense and respond to their mechanical microenvironment.
Synthetic Retina: Physical and chemical exploration of synthetic retina organoids.

Friedhelm Serwane: Retina-Organoid-Based Artificial Eye

Synthetic Retina: Physical and chemical exploration of synthetic retina organoids.
In many modern optical appliances unwanted light reflections reduce the image quality notably. Nocturnal moths have solved this problem million of years ago. A nanometre-sized structure on the surface of their eyes results in almost perfect anti-reflective properties. In the nanoAR workgroup we are developing new cost efficient methods to coat commercially available surfaces with a similar, biomimetic nanostructure.

Klaus Weishaupt: Technical Applications of Biomimetic Nanostructures - nanoAR

In many modern optical appliances unwanted light reflections reduce the image quality notably. Nocturnal moths have solved this problem million of years ago. A nanometre-sized structure on the surface of their eyes results in almost perfect anti-reflective properties. In the nanoAR workgroup we are developing new cost efficient methods to coat commercially available surfaces with a similar, biomimetic nanostructure.

Departmental Group Leaders

Many mammalian cells are enveloped by a sugar-protein coat. This coat plays a maior role in all interactions of the cell with its environment. Thus our main research interest is the analysis of the dynamic properties of this pericellular matrix.

Heike Böhm: Biophysics of Cellular Interactions

Many mammalian cells are enveloped by a sugar-protein coat. This coat plays a maior role in all interactions of the cell with its environment. Thus our main research interest is the analysis of the dynamic properties of this pericellular matrix.
The goal of the group is to determine how nanoscale features of the extracellular environment control cell function. We focus on the spatial regulation of integrin receptor clustering and on the cross talk with other transmembrane receptors.

Ada Cavalcanti-Adam: Growth Factor Mechanobiology

The goal of the group is to determine how nanoscale features of the extracellular environment control cell function. We focus on the spatial regulation of integrin receptor clustering and on the cross talk with other transmembrane receptors.
We are interested in biophysical aspects of dynamic cellular reorganizations, in the development of cell-type specific biomaterials, and in cellular controller systems.

Ralf Kemkemer: Cell Mechanics and Migration

We are interested in biophysical aspects of dynamic cellular reorganizations, in the development of cell-type specific biomaterials, and in cellular controller systems.

   

Senior Scientists

Reconceptualizing fluorescence correlation spectroscopy for monitoring and analyzing of periodically passing objects.

Eli Zamir and Günter Majer: Spectroscopy Technologies

Reconceptualizing fluorescence correlation spectroscopy for monitoring and analyzing of periodically passing objects.

 
loading content
Go to Editor View