Prof. Dr. Ilme Schlichting
Direktorin
Telefon:+49 6221 486-500

Curriculum Vitae

Martina Blochmann
Sekretariat Biomolekulare Mechanismen
Telefon:+49 6221 486-501

Aktuelle Pressemitteilungen

Die Veröffentlichung von Ergebnissen aus ersten experimentellen Messungen am European X-Ray Free-Electron Laser (EuXFEL) ist ein weiterer Meilenstein für die seit September 2017 arbeitende Einrichtung.

Erste Messergebnisse an neuem Röntgenlaser veröffentlicht

28. August 2018

Die Veröffentlichung von Ergebnissen aus ersten experimentellen Messungen am European X-Ray Free-Electron Laser (EuXFEL) ist ein weiterer Meilenstein für die seit September 2017 arbeitende Einrichtung. [mehr]
Die Reifungsprozesse der Virophagen geben uns einen besonderen Einblick.

Wie sieht ein Virus aus, das andere Viren „krank“ macht?

4. Juli 2018

Die Reifungsprozesse der Virophagen geben uns einen besonderen Einblick.

[mehr]

Abteilung Biomolekulare Mechanismen

Header image 1533652901

Abteilung für Biomolekulare Mechanismen

The primary scientific goal of the department is to derive a quantitative description of important biochemical problems at the level of biological systems or model reactions. Based on a common infrastructure, each research group provides a unique methodological expertise that complement each other.

In the general excitement of a time when three-dimensional protein structures of whole genomes are being determined automatically, it is often forgotten that a structure in itself does not tell one how the molecule works or folds. For that, one needs to know a great deal about mechanism, intermediates, structural dynamics and molecular interactions. We gather this information using a wide range of biochemical and biophysical techniques, including molecular biology, transient kinetics and crystallography, mass spectrometry, and computation, to understand how the "jigglings and wigglings of atoms" underlie and contribute to biological function. We study light-induced reactions and those that make use of flavin or heme cofactors, the unique biochemical pathways in anamoxosomes, giant viruses and their virophages as well as their assembly. In addition, we are using X-ray free-electron lasers for structural biology, exploring and further developing their applications.

AbteilungsgruppenleiterInnen

Ilme Schlichting: Photoreceptors

Since light is an important environmental variable, many organisms have evolved signaling pathways that not only sense, but also transmit and thereby translate this stimulus into various biochemical activities. We study a variety of photoreceptor proteins that use different chromophors for light absorption.  A major focus is on blue-light absorbing flavin-based photosensors that are coupled to an array of other domains such as kinases and transcription factors. To characterize the light-induced structural changes in the sensor domain and to understand how they activate the regulated output domain, we use biochemical and biophysical approaches including various structural methods, such as hydrogen deuterium exchange coupled to mass spectrometry (HDX-MS), static and time-resolved X-ray diffraction and solution scattering. This is supported by computational studies performed in Tatiana Domratcheva’s group. Together with spectroscopic data, this allows us to understand on a molecular level how absorption of a photon results in a specific structural change of the protein that triggers a secondary signal resulting in a biological event.

Ilme Schlichting: X-ray Free Electron-Laser Based Structural Biology

Structural biology, and in particular scattering-based techniques making use of X-rays and electrons, have provided high-resolution insight in the structure and function of molecules, molecular assemblies, and cells. Despite a lot of advances in instrumentation, radiation damage limits high resolution imaging of biological material using conventional X-ray or electron based approaches and can change in particular redox sensitive cofactors, compromising chemical insight in reaction mechanisms. X-ray free-electron lasers (XFELs) exceed the peak brilliance of conventional synchrotrons by almost 10 billion times. They promise to break the nexus between radiation damage, sample size, and resolution by providing extremely intense femtosecond X-ray pulses that pass the sample before the onset of significant radiation damage.

Robert Shoeman: Analytical Protein Biochemistry

The performance of instrumentation for the precise biochemical characterization of proteins has increased dramitically in recent years, primarily as a result of improvements in computer hardware. This is particularly obvious in the field of mass spectrometry, where newer instruments show increases in resolution and sensitivty of more than 1000-fold over instruments dating from the year 2000, and in robotics, where sophisticated as well as dedicated instruments have become affordable and usable, even for small groups of users.

ForschungsgruppenleiterInnen

The discovery of anammox bacteria in the 1990's has dramatically changed our understanding of the global nitrogen cycle. These bacteria perform ANaerobic AMMonium Oxidation (ANAMMOX), combining ammonium with nitrite into molecular dinitrogen (N2) and water, yielding energy for the cell. This process relies on highly unusual intermediates such as hydrazine. We are studying the molecular mechanism of the ANAMMOX process using structural biology.

Thomas Barends: Structural Biology of Elemental Cycles

The discovery of anammox bacteria in the 1990's has dramatically changed our understanding of the global nitrogen cycle. These bacteria perform ANaerobic AMMonium Oxidation (ANAMMOX), combining ammonium with nitrite into molecular dinitrogen (N2) and water, yielding energy for the cell. This process relies on highly unusual intermediates such as hydrazine. We are studying the molecular mechanism of the ANAMMOX process using structural biology.
Bruce Doak and his group invent and develop novel methods of sample delivery for use at advanced X-ray sources, including X-ray Free-Electron Lasers (XFEL) and fourth generation synchrotrons.  Based on their research and development, they design and fabricate well-engineered sample injectors for X-ray scattering facilities worldwide.

R. Bruce Doak: Invention and Engineering of Sample Delivery Techniques for Advanced X-ray Sources

Bruce Doak and his group invent and develop novel methods of sample delivery for use at advanced X-ray sources, including X-ray Free-Electron Lasers (XFEL) and fourth generation synchrotrons.  Based on their research and development, they design and fabricate well-engineered sample injectors for X-ray scattering facilities worldwide.
Sunlight is an important environmental factor and light-induced chemical reactions may have both beneficial and detrimental biological effects. Photon absorption produces highly reactive excited molecules which can undergo chemical changes.

Tatiana Domratcheva: Computative Photobiologie

Sunlight is an important environmental factor and light-induced chemical reactions may have both beneficial and detrimental biological effects. Photon absorption produces highly reactive excited molecules which can undergo chemical changes.
Giant viruses and virophages are two groups of DNA viruses that infect single-celled eukaryotes (protists). Encoding hundreds of proteins and featuring particles that are visible by light microscopy, giant viruses are the largest known viruses. Their enormous coding potential renders them host-independent for many biochemical pathways, such as transcription, glycosylation, DNA replication and repair, and allows certain giant viruses to replicate entirely in the cytoplasm. Virophages are smaller DNA viruses that parasitize upon the enzymatic complexity of giant viruses. In co-infected host populations, the virophage inhibits replication of the giant virus and increases host survival. We are interested in the underlying mechanisms of virophage-virus-host interactions and in the diversity and evolutionary history of these viruses.

Matthias Fischer: Viruses of Protists

Giant viruses and virophages are two groups of DNA viruses that infect single-celled eukaryotes (protists). Encoding hundreds of proteins and featuring particles that are visible by light microscopy, giant viruses are the largest known viruses. Their enormous coding potential renders them host-independent for many biochemical pathways, such as transcription, glycosylation, DNA replication and repair, and allows certain giant viruses to replicate entirely in the cytoplasm. Virophages are smaller DNA viruses that parasitize upon the enzymatic complexity of giant viruses. In co-infected host populations, the virophage inhibits replication of the giant virus and increases host survival. We are interested in the underlying mechanisms of virophage-virus-host interactions and in the diversity and evolutionary history of these viruses.
Attaining a well defined three dimensional structure and thus functionality can be a serious challenge in the early life of many proteins. Although the final structure is energetically favored, many side reactions can occur mostly leading to aggregation that prevent the formation of the native protein structure. Molecular chaperones are ubiquitous in prokarytic/eukaryotic organisms and form cellular networks which assist protein folding in the cell.

Jochen Reinstein: Virus Capsid Assembly and Molecular Chaperones

Attaining a well defined three dimensional structure and thus functionality can be a serious challenge in the early life of many proteins. Although the final structure is energetically favored, many side reactions can occur mostly leading to aggregation that prevent the formation of the native protein structure. Molecular chaperones are ubiquitous in prokarytic/eukaryotic organisms and form cellular networks which assist protein folding in the cell.
 
loading content
Zur Redakteursansicht